Publications

Publications

A role for the Drosophila zinc transporter Zip88E in protecting against dietary zinc toxicity

Richards, C.D., Warr, C.G. and Burke, R.E. (2017). PLOS One, in press (accepted 30/06/17)

Differential regulation of protein tyrosine kinase signalling by Dock and the PTP61F variants

Willoughby, L.F., Manent, J., Allan, K, Lee, H., Portela, M., Wiede, F. Warr, C.G., Meng, T-C., Tiganis, T. and Richardson, H.E. (2017). The FEBS Journal, in press (accepted 18/05/17)

Maternal Torso-like coordinates tissue folding during Drosophila gastrulation

Johnson, T.K., Moore, K.A., Whisstock, J.C. and Warr, C.G. (2017). Genetics, 206: 1-10

MACPF/CDC proteins in development: Insights from Drosophila Torso-like

Johnson, T.J., Henstridge, M.A. and Warr, C.G. (2017). Seminars in Cell and Developmental Biology, doi.org/10.1016/j.semcdb.2017.05.003

A novel syndromic neurodevelopmental disorder caused by de novo variants in EBF3 with features that overlap with ARX-related disorders

Chao, H. T., Davids, M., Burke, E., Pappas, J. G., Rosenfeld, J. A., McCarty, A. J.,Davis, T., Wolfe, L., Toro, C., Tifft, C., Xia, F., Stong, N., Johnson, T.J., Warr, C.G., Undiagnosed Diseases Network, Yamamoto, S., Adams, D. R., Markello, T. C., Gahl, W. A., Bellen, H. J., Wangler, M. F., Malicdan, M. C. V. (2016). Am J. Human Genetics. 100: 128-137 

Development of the cellular immune system of Drosophila requires the Membrane Attack Complex/Perforin-like protein Torso-like

Forbes-Beadle, L., Crossman, T., Johnson, T.K., Burke, R. Warr, C.G#. and Whisstock, J.C.# (2016). Development of the cellular immune system of Drosophila requires the Membrane Attack Complex/Perforin-like protein Torso-like. (# joint senior and corresponding author). Genetics. doi:10.1534/genetics.115.185462

Reduced glutathione biosynthesis in Drosophila melanogaster causes neuronal defects linked to copper deficiency.

Mercer, S.W., La Fontaine, S., Warr, C.G. and Burke, R. (2016). Reduced glutathione biosynthesis in Drosophila melanogaster causes neuronal defects linked to copper deficiency. J. Neurochemistry 137:360-370. doi:10.1111/jnc.13567

Torso-like mediates extracellular accumulation of Furin-cleaved Trunk to pattern the Drosophila embryo termini.

Johnson, T.K., Henstridge, M.A., Herr, A., Moore, K.A., Whisstock, J.C. & Warr, C.G. (2015). Torso-like mediates extracellular accumulation of Furin-cleaved Trunk to pattern the Drosophila embryo termini. Nature Communications 6, Article number: 8759. doi:10.1038/ncomms9759

A role for dZIP89B in Drosophila dietary zinc uptake reveals additional complexity in the zinc absorption process.

Richards, C.D., Warr, C.G., Burke, R. (2015) A role for dZIP89B in Drosophila dietary zinc uptake reveals additional complexity in the zinc absorption process, The International Journal of Biochemistry & Cell Biology, 69, 11-19. doi:10.1016/j.biocel.2015.10.004

Capturing embryonic development from metamorphosis: How did the terminal patterning signalling pathway ofDrosophila evolve?

Duncan, E.J., Johnson, T.K., Whisstock, J.C., Warr, C.G. and Dearden, P.K. (2014). Capturing embryonic development from metamorphosis: How did the terminal patterning signalling pathway ofDrosophila evolve? Current Opinion in Insect Science, In Press. doi:10.1016/j.cois.2014.04.007

The Drosophilaphospholipid flippase dATP8B is required for odorant receptor function.

Liu, Y-C., Pearce, M.W., Honda, T., Johnson, T.K., Charlu, S., Sharma, K.R., Imad, M., Burke, R.E., Zinsmaier, K.E., Ray, A., Dahanukar, A., de Bruyne, M. and Warr, C.G. (2014). The Drosophilaphospholipid flippase dATP8B is required for odorant receptor function. PLOS Genetics 10: e1004209. doi:10.1371/journal.pgen.1004209

Trunk cleavage is essential for Drosophila terminal patterning and occurs independently of Torso-like.

Henstridge, M.A , Johnson, T.K., Warr, C.G. # and Whisstock, J.C. # (2014). Trunk cleavage is essential for Drosophila terminal patterning and occurs independently of Torso-like. (# joint senior author). Nature Communications 5:3419 doi: 10.1038/ncomms4419

Vacuolar-type H ATPase subunits and the neurogenic protein big brain are required for optimal copper and zinc uptake.

Wang, J., Binks T., Warr, C.G. and Burke, R.E. (2014). Vacuolar-type H ATPase subunits and the neurogenic protein big brain are required for optimal copper and zinc uptake. Metallomics, 6, 2100-8doi:10.1039/C4MT00196F

Drosophila olfactory receptors as classifiers for volatiles from disparate real world applications.

Nowotny, T., Berna, A.Z., Trowell, S.C., Warr, C.G. and de Bruyne, M. (2014). Drosophila olfactory receptors as classifiers for volatiles from disparate real world applications. Bioinspiration and Biomimetics, 9, 046007. doi:10.1088/1748-3182/9/4/046007

Copper overload and deficiency both adversely affect the central nervous system of Drosophila

Hwang. E, de Bruyne, M., Warr, C.G. and Burke, R.E. (2014). Copper overload and deficiency both adversely affect the central nervous system of Drosophila. Metallomics, doi: 10.1039/C4MT00140K

High resolution structure of cleaved Serpin 42Da from Drosophila melanogaster.

Ellisdon, A.M., Zhang, Q., Henstridge, M.A, Johnson, T.K., Warr, C.G., Law, R.H.P. and Whisstock, J.C. (2014). High resolution structure of cleaved Serpin 42Da from Drosophila melanogaster. BMC Structural Biology 14:14. doi:10.1186/1472-6807-14-14

Torso-like functions independently of Torso to regulate Drosophila growth and developmental timing.

Johnson, T.K., Crossman, T., Foote, K.A., Henstridge, M.A., Saligari, M.J., Forbes Beadle, L., Herr, A., Whisstock, J.C. # and Warr, C.G. # (2013).Torso-like functions independently of Torso to regulateDrosophila growth anddevelopmental timing. (# joint senior author). Proceedings of the National Academy of Sciences USA 110, 14688-92. doi:10.1073/pnas.1309780110

The Toll and Imd pathways are not required for Wolbachia mediated dengue virus interference.

Rancès, E., Johnson, T.K., Popovici, J., Iturbe-Ormaetxe, I., Zakir, T., Warr, C.G. and O’Neill, S.L. (2013) The Toll and Imd pathways are not required for Wolbachia mediated dengue virus interference. Journal of Virology, 87, 11945-11949. doi:10.1128/JVI.01522-13

The nuclear and ER-targeted forms of the protein tyrosine phosphatase PTP61F regulate Drosophila growth, lifespan and fecundity.

Buszard, B.J., Johnson, T.K., Meng, T-C., Burke, R., Warr, C.G#. and Tiganis, T.# (2013). The nuclear and ER-targeted forms of the protein tyrosine phosphatase PTP61F regulate Drosophila growth, lifespan and fecundity. Molecular and Cellular Biology, 33, 1345-1356. (# joint senior author). doi: 10.1128/MCB.01411-12

In vivo zinc toxicity phenotypes provide a sensitized background that suggests zinc transport activities for most of the Drosophila Zip and ZnT genes.

Lye. J.C., Richards, C.D., Dechen, K., Warr, C.G. and Burke, R. (2013). In vivo zinc toxicity phenotypes provide a sensitized background that suggests zinc transport activities for most of theDrosophila Zip and ZnT genes. Journal of Biological Inorganic Chemistry, 18, 322-332. doi: 10.1007/s0075-013-0976-6

Systematic functional characterization of putative zinc transport genes and identification of zinc toxicosis phenotypes in Drosophila melanogaster.

Lye. J.C., Richards, C.D., Dechen, K., Paterson, D., de Jonge, M.D., Howard, D.L., Warr, C.G. and Burke, R. (2012). Systematic functional characterization of putative zinc transport genes and identification of zinc toxicosis phenotypes in Drosophila melanogaster. J. Exp. Biol. 215, 3254-3265. doi: 10.1242/jeb.069260

A screen for genes expressed in the olfactory organs of Drosophila melanogaster identifies genes involved in olfactory behaviour.

Tunstall, N.W., Herr, A., de Bruyne, M. and Warr, C.G. (2012). A screen for genes expressed in the olfactory organs of Drosophila melanogaster identifies genes involved in olfactory behaviour. PLoS One 7(4) e35641. doi: 10.1371/journal.pone.0035641

Dock/Nck facilitates PTP61F/PTP1B regulation of insulin signalling.

Wu, C-L.#, Buszard, B.J.#, Teng, C-H., Chen, W-L., Warr, C.G., Tiganis, T. and Meng, T-C. (2011). Dock/Nck facilitates PTP61F/PTP1B regulation of insulin signalling. Biochemical Journal, 439, 151-159. (# equal first author). doi: 10.1042/BJ20110799

Detection of volatile indicators of illicit substances by the olfactory receptors of Drosophila melanogaster.

Marshall, B., Warr. C.G. and de Bruyne, M. (2010). Detection of volatile indicators of illicit substances by the olfactory receptors of Drosophila melanogaster. Chemical Senses 35, 613-625. doi: 10.1093/chemse/bjq050

Functional and molecular evolution of olfactory neurons and receptors for aliphatic esters across the Drosophila genus.

de Bruyne, M., Smart, R., Zammit, E. and Warr, C.G. (2010). Functional and molecular evolution of olfactory neurons and receptors for aliphatic esters across the Drosophila genus. J. Comp. Physiol. A.196, 97-109. doi: 10.1007/s00359-009-0496-6

Molecular basis of female-specific odorant responses in Bombyx mori.

Anderson, A.R., Wanner, K.W., Trowell, S.C, Warr, C.G., Jaquin-Joly, E, Zagutti, P., Robertson, H. and Newcomb, R.D. (2009). Molecular basis of female-specific odorant responses in Bombyx mori. Insect Biochemistry and Molecular Biology, 39, 189-197. doi:10.1016/j.ibmb.2008.11.002

Drosophila odorant receptors are novel seven transmembrane domain proteins that can signal independently of heterotrimeric G proteins.

Smart, R., Kiely, A., Beale, M., Vargas, E., Carraher, C., Kralicek, A.V., Christie, D.L., Chen, C., Newcomb, R.D, and Warr, C.G. (2008). Drosophila odorant receptors are novel seven transmembrane domain proteins that can signal independently of heterotrimeric G proteins. Insect Biochemistry and Molecular Biology, 38, 770-780. doi:10.1016/j.ibmb.2008.05.002

Selective pressures on Drosophila chemosensory receptor genes.

Tunstall, N.E., Sirey, T., Newcomb, R.D. and Warr, C.G. (2007). Selective pressures on Drosophila chemosensory receptor genes. Journal of Molecular Evolution 64, 628-636. doi: 10.1007/s00239-006-0151-6

Functional analysis of a Drosophila melanogaster olfactory receptor expressed in Sf9 cells.

Kiely, A., Authier, A., Kralicek, A.V., Warr, C.G. and Newcomb, R.D. (2006). Functional analysis of aDrosophila melanogaster olfactory receptor expressed in Sf9 cells. Journal of Neuroscience Methods,159, 189-194. doi: 10.1016/j.jneumeth.2006.07.005

Molecular and cellular organization of insect chemosensory neurons.

deBruyne, M. and Warr, C.G. (2006) Molecular and cellular organization of insect chemosensory neurons. BioEssays, 28, 23-34. Doi: 10.1002/bies.20338

Coexpression of two functional odor receptors in one neuron.

Goldman, A.L., van der Goes van Naters, W., Lessing, D., Warr, C.G. and Carlson, J.R. (2005). Coexpression of two functional odor receptors in one neuron. Neuron 45, 661-666. doi: 10.1016/j.neuron.2005.01.025

Integrating the molecular and cellular basis of odor coding in the Drosophila antenna.

Dobritsa, A.A.#, van der Goes van Naters, W.#, Warr, C.G.#, Steinbrecht, R.A. and Carlson, J.R. (2003). Integrating the molecular and cellular basis of odor coding in the Drosophila antenna. Neuron 37, 827-841 (# equal first author). doi: 10.1016/S0896-6273(03)00094-1

Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster.

Robertson, H.M., Warr, C.G. and Carlson, J.R. (2003). Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster. Proceedings of the National Academy of Sciences USA 100 supp.2, 14537-14542. doi:10.1073/pnas.2335847100

Olfaction in Drosophila: Coding, Genetics and eGenetics.

Warr, C.G., Clyne, P.J., de Bruyne, M., Kim, J. and Carlson, J.R. (2001). Olfaction in Drosophila: Coding, Genetics and eGenetics. Chemical Senses 26, 201-206. doi: 10.1093/chemse/26.2.201

Candidate Taste Receptors in Drosophila.

Clyne, P.J#., Warr, C.G#. and Carlson, J.R (2000). Candidate Taste Receptors in Drosophila. Science,287, 1830-1834 (# equal first author). doi: 10.1126/science.287.5459.1830

A unified nomenclature system for the Drosophila odorant receptors.

Warr, C.G., Vosshall, L.B., Amrein, H., Carlson, J.R., Gao, Q. and Smith, D.P. (2000). A unified nomenclature system for the Drosophila odorant receptors. Cell 102, 145-146. doi:10.1016/S0092-8674(00)00020-9

Identification of novel multi-transmembrane proteins from genomic databases using quasi-periodic structural properties.

Kim, J., Moriyama, E.N., Warr, C.G., Clyne, P.J. and Carlson, J.R. (2000). Identification of novel multi-transmembrane proteins from genomic databases using quasi-periodic structural properties. Bioinformatics 16, 767-775. doi: 10.1093/bioinformatics/16.9.767

A Novel Family of Divergent Seven-Transmembrane Proteins: Candidate Odorant Receptors in Drosophila.

Clyne, P.J.#, Warr, C.G#., Freeman, M.R., Lessing, D., Kim, J. and Carlson, J.R. (1999). A Novel Family of Divergent Seven-Transmembrane Proteins: Candidate Odorant Receptors in Drosophila. Neuron 22 327-338 (# equal first author). doi: 10.1016/S0896-6273(00)81093-4

Identification and characterisation of two distinct calmodulin-binding sites in the Trpl ion channel protein of Drosophila melanogaster.

Warr, C.G. and Kelly, L.E. (1996). Identification and characterisation of two distinct calmodulin-binding sites in the Trpl ion channel protein of Drosophila melanogaster. Biochemical J. 314 497-503

 

Non peer-reviewed

Kralicek, A.V., Warr, C.G. and Newcomb, R.D. (2006). Smelling the difference – it’s all in the combination! What the fly can tell us about the sense of olfaction. ChemoSense Vol.8 No. 3, 1-5.

 

Book Chapters

Tunstall, N. and Warr, C.G. (2012) Chemical Communication in Insects: The Peripheral Odour Coding System of Drosophila Melanogaster. In Sensing in Nature, ed. C. Lopez-Larrea. Springer and Landes Bioscience. ISBN: 978-4614-1703-3.